Rational points on diagonal quartic surfaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational points on diagonal quartic surfaces

We searched up to height 107 for rational points on diagonal quartic surfaces. The computations fill several gaps in earlier lists computed by Pinch, Swinnerton-Dyer, and Bright.

متن کامل

Density of Rational Points on Diagonal Quartic Surfaces

Let a, b, c, d be nonzero rational numbers whose product is a square, and let V be the diagonal quartic surface in P defined by ax + by + cz + dw = 0. We prove that if V contains a rational point that does not lie on any of the 48 lines on V or on any of the coordinate planes, then the set of rational points on V is dense in both the Zariski topology and the real analytic

متن کامل

Rational Points on Quartic Hypersurfaces

Let X be a projective non-singular quartic hypersurface of dimension 39 or more, which is defined over Q. We show that X(Q) is non-empty provided that X(R) is non-empty and X has p-adic points for every prime p.

متن کامل

Brauer groups of diagonal quartic surfaces

We describe explicit methods of exhibiting elements of the Brauer groups of diagonal quartic surfaces. Using these methods, we compute the algebraic Brauer–Manin obstruction in two contrasting examples. In the second example, the obstruction is found to be trivial but a computer search reveals no points of small height on the surface.

متن کامل

Rational Points on Cubic Surfaces

Let k be an algebraic number eld and F (x0; x1; x2; x3) a non{singular cubic form with coeecients in k. Suppose that the pro-jective cubic k{surface X P 3 k given by F = 0 contains three coplanar lines deened over k, and let U (k) be the set of k{points on X which does not lie on any line on X. We show that the number of points in U (k), with height at most B, is OF;"(B 4=3+") for any " > 0.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 2012

ISSN: 0025-5718,1088-6842

DOI: 10.1090/s0025-5718-2011-02500-7